Final Synthesis & Research Dossier (v1.0) - PUBLIC VERSION

Author: Yahor Kamarou

Affiliation: Independent Research Initiative on Physics-Based AI Dynamics

Date: October 2026

Contact: yahorkamarou@gmail.com

0. Executive Summary

Core Discovery. Stochastic learning systems exhibit a preferred fluctuation scale governed by:

\boxed{3\pi\alpha \approx 0.068776}

In neural networks, this manifests as a **preferred variance level** of gradient dynamics—an **emergent attractor** of the training process.

Experimental Verification.

1. Single-task (MNIST, MLP, SGD):

Test accuracy: 98.1% with minimal sharpness.

2. Continual Learning (Split-MNIST, 5 tasks):

APS-4.2 achieves 92.8% average accuracy with 3.1% forgetting.

3. CIFAR-10 (CNN):

- Best accuracy at $\zeta = 0.00 \rightarrow 75.99\%$
- Strongest $3\pi\alpha$ signature at $\zeta \approx 0.035$
- Demonstrates physics-performance trade-off

Key Insight. $3\pi\alpha$ serves as a **universal variance attractor** in micro-regimes, while practical systems intentionally deviate from this natural state to optimize performance.

1. Background & Definitions

1.1 Phase Variance Framework

Learning dynamics as stochastic phase evolution:

 $R \geq \frac{2_{\star}}{3\pi^2_{\star}} R \exp i v \left(\frac{2_{\star}}{2\pi^2_{\star}} \right)$

 $3\pi\alpha$ signature: R \approx 1 \pm tolerance, indicating optimal dynamical alignment.

1.2 APS Framework Components

- ζ dynamical damping coefficient
- **k** elastic memory strength

2. Empirical Laws & Scaling

2.1 The 3πα Variance Law

Under vanilla SGD:

\sigma^2_{\text{grad}} \to 3\pi\alpha

Evidence: MNIST/MLP shows R \approx 0.98–1.02 at convergence.

2.2 Depth Renormalization

For deeper networks:

\zeta_{\text{align}} \propto \frac{3\pi\alpha}{\sqrt{D}}

Observation: CNN optimal signature at $\zeta \approx 0.035 \approx \frac{1}{2} \cdot 3\pi\alpha$.

2.3 Performance-Physics Trade-off

• Max accuracy: $\zeta = 0 \ (R \gg 1)$

• Max $3\pi\alpha$ alignment: $\zeta \approx 0.035$ (R ≈ 1)

Continual learning: intentional R deviation for memory retention

3. Algorithmic Framework

3.1 APS Design Philosophy

Triad of friction (ζ), elasticity (κ), inertia (w_a) balancing:

- Plasticity (new learning)
- Stability (memory retention)
- Dynamical health (variance regulation)

3.2 APS-4.2 (Production Variant)

Configuration:

- $\zeta = 0$ (no external damping)
- κ adaptive via proprietary health monitoring
- Replay buffer: 200-400 samples/class
- Knowledge distillation (T=2.0)
- EMA anchor (commercial optimization)

Performance: 92.8% accuracy, 3.1% forgetting on Split-MNIST

4. Experimental Validation

4.1 Single-task MNIST

• Test accuracy: 98.06%

• Variance ratio: R ≈ 0.98

Minimal sharpness at convergence

4.2 Continual Learning Benchmark

Method	Avg Accuracy	Forgetting
SGD	19.3%	99.9%
EWC	~45%	~85%
APS-4.2	92.8%	3.1%

4.3 Architecture Scaling (CIFAR-10)

• $\zeta = 0.000$: 75.99% test, R = 11.49 (hot regime)

• $\zeta = 0.035$: 27.25% test, R = 0.79 (optimal signature)

• $\zeta \ge 0.05$: system collapse (over-damped)

5. Scientific Implications

5.1 Established Findings

- $3\pi\alpha$ variance law in single-task regimes
- Depth-dependent ζ renormalization
- · Performance-physics trade-off universality
- Replay + elastic memory dominance in CL

5.2 Open Questions

- Large-scale transformer validation
- Unified renormalization group theory
- Thermodynamic control frameworks

6. Practitioner Guidelines

Continual Learning (Performance):

- $\zeta \approx 0$, adaptive κ monitoring
- Replay 200–400 samples/class
- KD (T=2.0) + EMA anchoring
- Gradient clipping (1.0)

Physical Analysis (Signature Study):

- Scan $\zeta \approx 0.03-0.04$ for CNNs
- Monitor R ratio trajectories
- · Expect accuracy trade-off

7. Falsifiable Predictions

- 1. **Optimizer invariance**: 3πα signature persists across SGD/Adam/RMSProp
- 2. **Depth scaling**: ζ _align $\approx 1/\sqrt{D}$ across architectures
- 3. Sharpness-variance correlation: minima co-occur with $R \approx 1$
- 4. **CL memory trade-off**: κ increase \rightarrow R deviation from unity

8. Measurement Protocol

Spatial Gradient Variance:

Health Monitoring:

- Compute R = σ^2 _grad / (3 $\pi\alpha$) over sliding windows
- · Co-monitor test accuracy and loss sharpness
- Report trajectories with confidence intervals

9. Limitations & Future Work

Current Scope:

- MNIST/CIFAR-10 scale validation
- MLP/CNN architectures

CPU-scale experiments

Extension Roadmap:

- Large language model verification
- ViT/diffusion model scaling laws
- Real-world deployment studies

Appendix A: Core Equations

Signature Metric:

 $R = \frac{2_{\pi^2_{\pi^2_{\pi^2_{\pi^2}}}}{3\pi^2_{\pi^2_{\pi^2_{\pi^2}}}}}{3\pi^2_{\pi^2_{\pi^2_{\pi^2}}}}$

Scaling Law:

Memory Update:

w \leftarrow w - \eta\nabla L + \eta\kappa(w_a - w)

Appendix B: Representative Results

• MNIST/MLP: R=0.98, Accuracy=98.06%

• Split-MNIST: 92.8% avg, 3.1% forgetting

• **CIFAR-10**: Signature peak at ζ=0.035 (R=0.79)

Commercial Note

Advanced adaptive mechanisms including **dynamic health monitoring**, **proprietary convergence triggers**, and **optimized parameter adaptation** are available in the commercial APS framework. Research collaborations and licensing inquiries welcome.

Reproducibility

Public Baseline:

• $\zeta = 0$, $\kappa = 0.08-0.16$ adaptive

Replay: 200–400 samples/class

• KD: T=2.0, EMA: μ=0.05

• Gradient clipping: 1.0

Expected Performance: 90–93% accuracy, <5% forgetting on Split-MNIST.

This document presents the scientific foundation of the $3\pi\alpha$ discovery. Implementation details of advanced adaptive mechanisms remain proprietary to protect commercial development while enabling academic verification of core claims.