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0. Executive Summary

Core Discovery. Stochastic learning systems exhibit a preferred fluctuation scale governed by:
\boxed{3\pi\alpha \approx 0.068776}

In neural networks, this manifests as a preferred variance level of gradient dynamics—an emergent
attractor of the training process.

Experimental Verification.

1. Single-task (MNIST, MLP, SGD):
\frac{\sigma”2_{\text{grad}}}{3\pi\alpha} \approx 0.98-1.02
Test accuracy: 98.1% with minimal sharpness.

2. Continual Learning (Split-MNIST, 5 tasks):
APS-4.2 achieves 92.8% average accuracy with 3.1% forgetting.

3. CIFAR-10 (CNN):
o Bestaccuracy at {=0.00 - 75.99%
o Strongest 3ma signature at { =~ 0.035

o Demonstrates physics—performance trade-off

Key Insight. 3ma serves as a universal variance attractor in micro-regimes, while practical systems
intentionally deviate from this natural state to optimize performance.

1. Background & Definitions

1.1 Phase Variance Framework
Learning dynamics as stochastic phase evolution:
R \equiv \frac{\sigma”~2_{\text{grad, spatial}}}{3\pi\alpha}

3ma signature: R = 1 + tolerance, indicating optimal dynamical alignment.

1.2 APS Framework Components

e { - dynamical damping coefficient

e K — elastic memory strength
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e W, — exponential moving average anchor

2. Empirical Laws & Scaling

2.1 The 3ma Variance Law

Under vanilla SGD:
\sigma”2_{\text{grad}} \to 3\pi\alpha

Evidence: MNIST/MLP shows R =~ 0.98-1.02 at convergence.

2.2 Depth Renormalization

For deeper networks:
\zeta_{\text{align}} \propto \frac{3\pi\alpha}{\sqrt{D}}

Observation: CNN optimal signature at { = 0.035 = 2-3ma.

2.3 Performance-Physics Trade-off

e Maxaccuracy:{=0(R>»1)
e Max 3ma alignment: (= 0.035 (R= 1)

e Continual learning: intentional R deviation for memory retention

3. Algorithmic Framework

3.1 APS Design Philosophy
Triad of friction (), elasticity (k), inertia (w,) balancing:

e Plasticity (new learning)
e Stability (memory retention)

e Dynamical health (variance regulation)

3.2 APS-4.2 (Production Variant)
Configuration:

e (=0 (no external damping)

e K adaptive via proprietary health monitoring
e Replay buffer: 200-400 samples/class

e Knowledge distillation (T=2.0)

e EMA anchor (commercial optimization)

Performance: 92.8% accuracy, 3.1% forgetting on Split-MNIST



4. Experimental Validation

4.1 Single-task MNIST

e Test accuracy: 98.06%
e Variance ratio: R ~ 0.98

e Minimal sharpness at convergence

4.2 Continual Learning Benchmark

Method Avg Accuracy
SGD 19.3%

EWC ~45%
APS-4.2 92.8%

4.3 Architecture Scaling (CIFAR-10)

e ({=0.000:75.99% test, R =11.49 (hot regime)

e (=0.035:27.25% test, R = 0.79 (optimal signature)

e (= 0.05: system collapse (over-damped)

Forgetting
99.9%
~85%

3.1%

5. Scientific Implications

5.1 Established Findings

e 3ma variance law in single-task regimes
e Depth-dependent  renormalization
e Performance-physics trade-off universality

e Replay + elastic memory dominance in CL

5.2 Open Questions

e Large-scale transformer validation
e Unified renormalization group theory

e Thermodynamic control frameworks

6. Practitioner Guidelines



Continual Learning (Performance):

e (=0, adaptive kK monitoring

e Replay 200-400 samples/class
e KD (T=2.0) + EMA anchoring

e Gradient clipping (1.0)

Physical Analysis (Signature Study):

e Scan (= 0.03-0.04 for CNNs
e Monitor R ratio trajectories

e Expect accuracy trade-off

7. Falsifiable Predictions

_

Optimizer invariance: 3ma signature persists across SGD/Adam/RMSProp
Depth scaling: {_align - 1/\/D across architectures

Sharpness-variance correlation: minima co-occur with R = 1

P own

CL memory trade-off: k increase - R deviation from unity

8. Measurement Protocol

Spatial Gradient Variance:

def spatial_grad_variance(model):
norms = [p.grad.norm().item() for p in model.parameters()
if p.requires_grad and p.grad is not Nonel
return np.var(norms) if norms else 0.0

Health Monitoring:

e Compute R =02 _grad/ (3ma) over sliding windows
e Co-monitor test accuracy and loss sharpness

e Report trajectories with confidence intervals

9. Limitations & Future Work

Current Scope:

e MNIST/CIFAR-10 scale validation
e MLP/CNN architectures



e CPU-scale experiments

Extension Roadmap:

e |Large language model verification
e ViT/diffusion model scaling laws

e Real-world deployment studies

Appendix A: Core Equations

Signature Metric:
R =\frac{\sigma”2_{\text{grad}}}{3\pi\alpha}

Scaling Law:
\zeta_{\text{align}} \approx \frac{3\pi\alpha}{\sgrt{D}}

Memory Update:
w \leftarrow w - \eta\nabla L + \eta\kappa(w_a - w)

Appendix B: Representative Results

e MNIST/MLP: R=0.98, Accuracy=98.06%
e Split-MNIST: 92.8% avg, 3.1% forgetting
e CIFAR-10: Signature peak at =0.035 (R=0.79)

Commercial Note

Advanced adaptive mechanisms including dynamic health monitoring, proprietary convergence
triggers, and optimized parameter adaptation are available in the commercial APS framework. Research
collaborations and licensing inquiries welcome.

Reproducibility
Public Baseline:

e (=0, k=0.08-0.16 adaptive

e Replay: 200-400 samples/class
e KD:T=2.0, EMA: u=0.05

e Gradient clipping: 1.0

Expected Performance: 90-93% accuracy, <5% forgetting on Split-MNIST.



This document presents the scientific foundation of the 3ma discovery. Implementation details of
advanced adaptive mechanisms remain proprietary to protect commercial development while enabling
academic verification of core claims.



